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Abstract 

Recently evolved power electronics’ based domestic/residential appliances have begun to behave as single phase non-linear 

loads. Performing as voltage/current harmonic sources, those loads when connected to a three phase distribution network 

contaminate the line current with harmonics in addition to creating a neutral wire current increase. In this paper, an enhanced 

performance three phase four leg shunt active power filter (SAPF) controller is presented as a solution for this problem. The 

presented control strategy incorporates a hybrid predictive fuzzy-logic based technique. The predictive part is responsible for the 

SAPF compensating current generation while the DC-link voltage control is performed by a fuzzy logic technique. Simulations at 

various loading conditions are carried out to validate the effectiveness of the proposed technique. In addition, an experimental 

test rig is implemented for practical validation of the of the enhanced performance of the proposed technique. 

Key words: 4-leg converter, 4-wire unbalanced distribution system, Fuzzy logic controller, Predictive controller, Shunt active 

power filter 

I. INTRODUCTION 

Modern sophisticated power electronic devices have led a 

worldwide evolution of high performance consumer electronics 

and appliances such as air conditions, washing machines, 

personal computers, etc. These devices perform as non-linear 

loads injecting voltage and current harmonics especially at 

the low voltage distribution level, which results in 

overheating of distribution transformers, malfunctioning of 

protection devices, and cross-talk interference with nearby 

equipment [1]. 

In addition to supplying current harmonics, unbalanced loads 

contributes to additive neutral current generation in four wire 

distribution networks, which may lead to double over-sizing 

the neutral wire in recently installed low-voltage grids [1], [2]. 

Hence, the need to mitigate fourth wire neutral current is a 

must in modern distribution power networks [1]-[3]. 

Four-wire shunt active power filters (SAPFs) can achieve 

several simultaneous tasks, among them neutral current 

mitigation, line current harmonic cancellation, and reactive 

power compensation. 

Various SAPF topologies have been presented in the 

literature, where the 4-Leg, Split Capacitor and Cascaded 

H-Bridge are common examples [4]. Other dual function 

operations have been proposed for maximizing the benefits of 

an installed SAPF by adding extra functions such as 

renewable energy grid tied converter, UPS function, unified 

power quality control, etc. [5]-[9]. 

The core of SAPF operation is concerned with two main 

aspects: harmonic reference current generation and DC-link 

voltage control. For reference current generation, the classical 

p-q control is commonly utilized [10]-[15]. Hysteresis current 
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Fig. 1. Low-voltage distribution network under investigation. (a) Three-phase four-wire supply feeding a three-phase four-wire unbalanced 

non-linear load. (b) 4-Leg SAPF connected to the system under investigation. (c) Proposed SAPF controller block diagram. 

 

control can be adopted based on either p-q theory or load 

current detection, yet it suffers from variable switching losses 

[16]-[18]. 

For a more precise harmonic current extraction, adaptive 

filters can be utilized in SAPF current extraction, but the 

performance is highly dependent on designer experience and 

complex algorithms for the filter design to compensate for a 

measured signals delay [19]-[22]. The one-cycle-control 

algorithm can be considered as a powerful tool for harmonic 

current extraction in a SAPF since it does not require a 

phase-locked loop or utility voltages. 

The main drawback of this technique is the need of a 

systematic method for global dynamic analysis and a design 

tool specially when the input signal of the converter switch is 

a function of the output signal of that switch as in the case of 

SAPF converters [23]-[27]. Artificial neural networks (ANNs) 

can be utilized as harmonic current extractors for a SAPF. 

However, they require massive off-line training sets which is 

a major limitation [28]-[31]. The evolution of predictive 

control with its several advantages enables its utilization as a 

powerful tool for SAPF harmonic current extractors [32], 

[33]. The use of predictive controllers in a SAPF incorporates 

several advantages since no PLL is required, no previous 

training/designer based tuning is needed, and the load 

currents do not need to be measured [32], [34]-[36]. 

In terms of the DC-link voltage control, conventional 

Ziegler-Nichols tuned Proportional-Integral (PI) controllers 

suffers from a trade-off between a sluggish response and a 

transient over-shoot [37], [38]. The recently developed inverse 

control technique offers improved DC-link voltage dynamics 

when actual detailed period average dynamic system modeling 

is developed, which suffers from the common system 

elements’ aging effect that deteriorates system performance 

[39], [40]. Fuzzy logic controllers offer enhanced system 

performance, better dynamic and steady-state response yet still 

need designer experience in determining the required 

fuzzification rules and membership functions [41]-[44]. 

In this paper, a predictive-fuzzy logic hybrid SAPF 

controller is proposed. The presented technique does not 

require a PLL. In addition, only the supply current, supply 

voltage and DC-link voltage need to be measured. The 

proposed algorithm shows enhanced DC-link voltage 

performance at start-up, transient and steady-state conditions. 

The predictive current control succeeds in attaining balanced 

supply currents and mitigated neutral currents. In addition, it 

achieves a near-unity power factor with a fast dynamic 
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response under varying loading conditions. 

This paper is organized into six sections. Following the 

introduction, the second section illustrates the system under 

investigation. The proposed hybrid predictive fuzzy logic based 

control is explained in the third section. System performance 

investigations of the proposed algorithm using simulation 

results is discussed in the fourth section. For more clarification 

of the proposed algorithm effectiveness, an experimental setup 

and practical results at the transient and steady-state conditions 

are shown in the fifth section. Finally some conclusions are 

given in the sixth section. 

 

II. SYSTEM UNDER INVESTIGATION 

The investigated low-voltage distribution network 

incorporates a three-phase four-wire supply that feeds a 

three-phase four-wire non-linear unbalanced load. A system 

block diagram is shown in Fig. 1(a). This system suffers from 

supply current harmonics, supply current unbalance, and an 

undesirable neutral wire current. To sort out these power 

quality issues, a four-wire SAPF is connected at the Point of 

Common Coupling (PCC) between the supply and the load 

terminals with the 4-leg topology shown in Fig. 1(b). 

 

III. PROPOSED 4-LEG SAPF HYBRID PREDICTIVE 

FUZZY LOGIC CONTROLLER  

A 4-leg shunt APF is connected at the PCC to a three- 

phase four-wire grid through interfacing inductors for load 

current harmonics compensation, power factor improvement 

and supply currents balancing. The neutral wire is tied to the 

fourth leg in order to effectively mitigate the neutral current. 

The proposed 4-leg APF control system block diagram is 

shown in Fig. 1(c). The presented controller requires 

measurement of the supply voltage and supply current at the 

PCC, in addition to the DC-link voltage of the APF. 

Measurements of the load current and injected filter current 

are not required. The APF reference current is extracted using 

DC-link capacitor voltage control. The DC-link capacitor 

voltage Vdc is subtracted from the reference voltage, V
*
dc. A 

DC-Link voltage controller acts on the resultant error. The 

DC-link voltage is kept constant and the power balance 

between the supply, the SAPF, and the load is achieved since 

the capacitor instantaneously compensates the difference 

between the supply and the load power. Multiplication of the 

DC-Link voltage controller output by the PCC per unit 

voltage forms the supply current reference. No supply voltage 

harmonics are considered. 

A. Proposed Predictive Current Controller 

The relation between SAPF current, ic, the inverter output 

voltage, vc, and the grid voltage at the PCC, vs, is defined in 

discrete form by: 

  
 (   )  

  

  
(  
 (   )    ( ))    ( )      (1) 

where Li is the interfacing inductance, Ts is the sampling time, 

and ic
*
(k+1) and vc

*
(k+1) are the predicted reference current 

and the predicted reference output voltage of the SAPF at the 

sampling instant (k+1), respectively. 

The SAPF current ic at the sampling instant k is: 

  ( )    ( )    ( )               (2) 

where iL is the load current, and is is the grid current at the 

sampling instant k. Since the sampling instant (k + 1) is not 

available, ic
*
(k+1) is assumed to be equal to ic

*
(k). This 

introduces a one sample time delay which is less significant if 

the sampling frequency is high [1], [2]. 

The SAPF reference ic
*
 current can be expressed as: 

  
 ( )    ( )    

 ( )      (3) 

Hence, the predicted SAPF output voltage can be 

expressed in terms of the reference and actual grid currents 

by: 

  
 (   )  

  

  
(  ( )    

 ( ))    ( )      (4) 

In addition to compensating the supply current harmonics, 

the SAPF is controlled to achieve a balance of the three-phase 

currents. The load neutral current is given by: 

   ( )     ( )     ( )     ( )          (5) 

Similarly, the SAPF output for the forth-leg can be 

represented by: 

   
 (   )  

  

  
(   
 (   )    ( ))     ( )      (6) 

   (   )     (   )     ( )         (7) 

   
 (   )     

 (   )     ( )         (8) 

where isn, isn
*
, icn, icn

*
, iLn and vsn are the grid neutral current, 

reference grid neutral current, SAPF neutral current, 

reference SAPF neutral current, load neutral current and grid 

voltage at the neutral point, respectively. Hence:  
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 (   )     
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However: 

    
 (   )                 (10) 
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Then: 

   
 (   )   
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(   
 ( )     

 ( )     
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The above equations are used to predict the modulating 

signals necessary to generate the SAPF pulse width 

modulation (PWM) for both the three-phase and the forth-leg. 

Hence, the supply current and voltage becomes in phase and 

the grid supplies only active power to the load. The predictive 

control method proposed for the 4-leg SAPF can compensate 

both the grid current harmonics and the unbalance. Thus, it 
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Fig. 2. Proposed DC-link voltage fuzzy logic controller. (a) Controller block diagram. (b) FLC stages. (c) Error membership function. 

(d) Change of error membership function. (e) Output membership function. 

 

TABLE I 

FUZZY RULES BASE 

CE 
E 

NB NM NS Z PS PM PB 

NB PB PB PM PB PS PS Z 

NM PB PB PM PM PS Z NS 

NS PM PM PM PS Z NS NM 

Z PM PS PS Z NS NM NM 

PS PS PS Z NS NS NM ZM 

PM PS Z NS NM NM NM NB 

PB Z NS NS NM NM NB NB 

 
 
mitigates the neutral current and improves the power factor. It 

offers a simple realization, a reduced number of sensors and 

no PLL is required. 

B. Proposed DC-Link Voltage Fuzzy Logic Controller 

A Mamdani's type fuzzy logic controller [43], [44] is 

proposed for the SAPF DC-link voltage control. 

The actual DC-link voltage Vdc is compared to the 

reference value Vdc
*
. The error (E) can be expressed as: 

E= Vdc
*
 - Vdc               (14) 

The error (E) and change of error (CE) signals are 

processed through a fuzzy controller, as shown in Fig. 2(a), 

which contributes to the near zero steady-state error in 

tracking the reference current. In addition, the controller 

limits the overshoot and inrush current during the transient 

state. 

The fuzzy logic controller is independent of the system 

model. The design is mainly based on intuitive feeling and 

designer experience. The rules are expressed as follows: (the 

error E is X; and the change of error CE is Y) then (the 

control output is O). 

For enhanced performance of the controller, the fuzzy 

petitioned subspaces negative big (NB), negative medium 

(NM), negative small (NS), zero (Z), positive small (PS), 

positive medium (PM), and positive big (PB) are used. These 

seven membership functions are similar for the inputs and 

output. The FLC rules are summarized in Table I. 

The main parts of the proposed FLC including the 

fuzzification, rule-base, inference and defuzzification, are 

shown in Fig. 2(b). The membership functions (MFs) for the 

error, change of error and output variables are shown in Fig. 

2 parts (c), (d) and (e), respectively.  

The selection and tuning of the MFs is performed using the 

MATLAB
®
 Fuzzy Logic Toolbox, see the Appendix for 

design steps illustration of the MFs. 

 

IV. SIMULATION RESULTS 

A 4-leg SAPF is connected at the PCC to a three-phase 

four-wire grid through interfacing inductances with a neutral 

wire tied to the fourth leg. The system under investigation, 

shown in Fig. 1(c), is simulated using MATLAB/Simulink
®
 

to investigate its performance. The PCC voltage is 380 V. 

The non-linear load is represented by a three-phase diode 

rectifier feeding an inductive load consists of a resistor RL1= 

30 Ω and an inductor LL1=150 mH acting as a harmonic 

Fuzzification

Rule base

Inference Defuzzification

E

CE

O
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Fig. 3. DC-link capacitor voltage simulation results under: (a) proposed fuzzy logic controller; (b) conventional PI controller. 
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current source. The current unbalance is presented by 

connecting an inductive load with phase A consisting only of 

a resistor RLN= 15 Ω and an inductor LLN=50 mH. The 

resistance and the inductance of the SAPF coupling inductor, 

are Ri = 0.01 Ω and Li = 4 mH, respectively. A DC-link 

capacitor of 3 mF is used. 

The reference DC-link voltage is set to 650V, and the 

inverter switching frequency, fs, is 5 kHz. 

The SAPF is switched on at 0.04s and the load is increased 

at 0.2s by connecting the inductive load of the resistor RL2= 

50 Ω and the inductor LL2=50 mH in parallel to the existing 

three phase load. The DC-link voltage under the proposed 

fuzzy logic controller is shown in Fig. 3(a). The SAPF starts 

at 0.04s while the DC-link voltage builds up fast to its 

reference of 650V at 0.065s, with no overshoot when 

compared with Fig. 3(b). This demonstrates the DC-link 

voltage performance under the conventional PI controller, 

where the voltage suffers an overshoot to 740V and stabilize 

to its reference of 650V at 0.09s. The three-phase grid voltage 

waveform at the PCC is shown in Fig. 4 (a). 

A typical non-linear load current, iL, is shown in Fig. 4(b). 

It is shown that the load current is distorted and unbalanced 

because of the bridge rectifier loading effect and the parallel 

unbalanced load. The APF current, ic, shown in Fig. 4(c), 
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Fig. 6. Experimental setup. (a) Experimental system block diagram. (b) Photograph of the test rig. (c) Three phase unbalanced load. 
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with the proposed predictive fuzzy controller is injected at the 

PCC. As a result, a sinusoidal and balanced grid current, is, is 

achieved as illustrated in Fig. 4(d). A similar simulation was 

carried out for the system under investigation but with the 

conventional PI controller for the DC-link voltage control 

loop instead of the proposed fuzzy logic one. Simulation 

results are represented in Fig. 4 parts (e)-(f) for the SAPF 

current ic and the grid current is, respectively. It can be easily 

observed from Fig. 4 parts (d) and (f) that the proposed 

predictive fuzzy logic controller achieves a better THD and 

less overshoot for the grid current when compared to the 

conventional PI controller when utilized as the SAPF DC-link 

voltage controller. 

Under the proposed predictive fuzzy logic control 

algorithm, the grid neutral current isn is mitigated, as shown in 

Fig. 5(c), as a result of the injected SAPF neutral current icn, 

shown in Fig. 5(b). However, the load neutral current iLn 

exists as illustrated in Fig. 5(a). A similar simulation was 

carried out for the system under investigation but with the 

conventional PI controller for the DC-link voltage control 

loop instead of the proposed fuzzy logic controller. The 

simulation results are presented in Fig. 5 parts (d)-(e) for the 

SAPF neutral current icn and the grid current isn, respectively. 

Under the proposed predictive fuzzy algorithm, the grid 
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(b) 

Fig. 8. Proposed controller performance analysis: (a) comparison between supply line currents rms, peak value and THD (%) before and 

after compensation; (b) comparison between the system balance and power factor before and after compensation. 

 

neutral current isn does not exceed the peak value, 14A, which 

was attained before the SAPF started operation. On the other 

hand, the classical PI control algorithm was unable to limit 

the transient overshoot in the grid neutral current which 

reaches 20A at the SAPF start-up. Both techniques attain 

similar steady-state results in terms of grid neutral current 

mitigation. 

 

V. EXPERIMENTAL VERIFICATION 

A laboratory prototype for the system under investigation, 

as shown in Fig. 6, is implemented to experimentally validate 

the effectiveness of the proposed compensation technique. 

The proposed predictive fuzzy logic algorithm is implemented 

on a 32-bit, floating point, Digital Signal Processor (DSP) 

TMS320F28335. The SAPF is coupled to the PCC via a 4 mH 

interfacing inductor. 

The DC-link capacitor is 3 mF, and the SAPF inverter 

operates at a switching frequency of 5 kHz. The employed 

current and voltage sensors are LA 100-P and LV 25-P, 

respectively. 

The practical distorted unbalanced load current, iL, is 

shown in Fig. 7(a). The load current THD reaches 31% with a 

power factor of 0.8 and a 68% unbalance between the supply 

three phase currents. 

The DC-link voltage is stabilized at its reference of 650V 

under the proposed fuzzy logic control where an overshoot of 

nearly 37.5% exist if the conventional PI is utilized as a 

DC-link voltage controller, as illustrated in Fig. 7(b). It is 

shown that the proposed fuzzy-logic control features a better 

settling time and reduced over-shoot than the classical PI 

control. The SAPF compensating currents are shown in Fig. 

7(c). The SAPF is controlled to inject unbalanced compensating 

currents icabc to cancel grid current harmonics, which 

mitigates the supply neutral current and improves the power 

factor. Fig. 7(d) shows the load neutral current, iLn, the SAPF 

neutral compensating current, icn, and the supply neutral 

current, isn under the proposed predictive fuzzy-logic hybrid 

controller. It can be seen that the SAPF succeeded in 

mitigating the fourth wire supply current isn. 
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The compensated supply currents isabc are shown in Fig. 

7(e). The THD is improved from (21%, 31% and 31%) to 

(3.5%, 2.8 and 2.7) for phases A, B and C, respectively, 

which complies with the IEEE std. 519 [6-7]. In addition, the 

supply power factor is improved from 0.8 to 0.997. 

Furthermore, the compensated supply neutral current, isn, is 

mitigated form (12.7A rms 18A peak) to (0.6A rms 1.1A 

peak). The supply rms currents isabc are reduced from (21.6A, 

14.7A and 14.7A) to (13.8A, 13.7A and 13.5A) for phases A, 

B and C, respectively. As a result, the supply current balance 

is improved from 68% to 97.9%. 

Moreover, the supply peak currents are reduced form (29A, 

19A and 19.3A) to (19.5A, 19.3A and 19A) for phases A, B 

and C, respectively. The proposed predictive fuzzy hybrid 

control technique performance indicators are summarized in 

Fig. 8. 

 

VI. CONCLUSIONS 

A hybrid predictive fuzzy-logic based 4 leg SAPF control 

technique has been presented for low voltage distribution 

networks supplying unbalanced non-linear loads. The 

proposed technique offers enhanced performance since it 

succeeds in mitigating the supply current harmonics, achieves 

near power factor operation, offers a balanced supply current, 

and mitigates the neutral wire current. 

Several advantages are characterized for the proposed 

technique since a PLL is not required, and only the supply 

current, supply voltage and DC-link voltage need to be 

measured. The presented technique effectiveness has been 

verified using rigorous simulations and experimental validation. 

In addition, the following table summarizes a comparison 

between the proposed technique and various recent 

references. 

 

APPENDIX 

A. MFs’ Selection Using MATLAB®  Fuzzy Logic Toolbox 

A group of training data, based on system simulations 

under conventional controllers, was utilized to find the 

optimal MFs in the case under investigation. It is necessary to 

compare this result with the real one e.g. MAPE (Mean 

Average Percentage Error) to find less % err to find best MFs. 

This procedure is based on a constrained interpolations 

scheme, which was developed for fitting a membership 

function to a finite number of known membership values. 

 

TABLE II 

ASSESSMENT COMPARISON OF THE PROPOSED TECHNIQUE WITH RECENT REFERENCES 

Ref. 

No. 

Topology Harmonic 

current 

extraction 

method 

Current 

control 

DC-link 

voltage 

control 

Advantages shared 

with the proposed 

technique 

Disadvantages when compared to the proposed 

technique 

45 Split- 

Capacitor 

p-q Sliding 

Mode 

Control 

(SMC) 

PI 

Controller  
 PLL less  Sensing the load and the filter currents are 

mandatory which increases system cost. 

 Computational burden associated with the use of 

p-q method. 

 Larger capacitor size is required. 

 Higher DC-link voltage.   

46 Split- 

Capacitor  

Synchronous 

Reference 

Frame (SRF) 

and p-q 

Dynamic 

Hysteresis 

Control 

DC-link 

Voltage 

Regulator 

 Low THD  Sensing the load and the filter currents are 

mandatory which increases system cost. 

 Computational burden associated with the use of 

SRF (Park and Park inverse) and two low pass 

filters (LPFs) of same order and cut-off 

frequency. 

 Uses PLL is unavoidable. 

47 Split- 

Capacitor 

p-q Digital 

Repetitive 

Control 

Digital 

Repetitive 

Control 

 PLL less 

 Reduced number of 

sensors, only 

measurements of 

supply voltage and 

supply current are 

required 

 Sampling frequency in current control loop must 

be equal to the switching frequency. 

 Eliminates only odd harmonics. 

 DC-link voltage suffers from high oscillation 

and variation between the two capacitors when 

unbalance load is introduced.  

 The supply voltage must be sinusoidal or the 

need for PLL arises. 

48 Split- 

Capacitor 

Synchrono

us 

Reference 

Frame 

(SRF) 

Linear  

Hysteresis 

Control 

Linear  

Control 

  Sensing the load and the filter currents are 

mandatory which increases system cost. 

 Need of PLL. 

 High reference DC-link voltage of 1200 V with 

grid supply voltage only 220 V. 

 Use of two large capacitors of 10 mF each. 
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Ref. 

No. 

Topology Harmonic 

current 

extraction 

method 

Current 

control 

DC-link 

voltage 

control 

Advantages shared 

with the proposed 

technique 

Disadvantages when compared to the proposed 

technique 

49 Split- 

Capacitor 

Power- 

Balance 

Theory  

Power- 

Balance 

Theory 

Power- 

Balance 

Theory 

 PLL less  Sensing the load and the filter currents are 

mandatory which increases system cost. 

 Need of low-pass filter (LPF) and band-pass 

filter (BPF). 

50 Four-Leg Synchronous 

Reference 

Frame (SRF) 

Adaptive 

Linear 

Element 

(Adaline) 

Low Pass 

Filter 

(LPF) 

  More number of sensors which increases system 

cost. 

 Sensing the load and the filter currents is 

required. 

 Computational burden associated with the use of  

SRF,  Adaline, and LPF. 

 PLL is mandatory. 

 Extremely large capacitor of 100 mF 

51 Four-Leg Non- 

Iterative 

Method 

Hysteresis 

Control 

PI 

Controller 
 PLL less  Sensing the load and the filter currents are 

mandatory which increases system cost  

52 Split- 

Capacitor 

Modified  

d–q 

Hysteresis 

Control 

PI 

Controller 
 PLL less  Sensing the load and the filter currents are 

mandatory which increases system cost 

 Need of low-pass filter (LPF) and band-pass 

filter  

 Higher DC-link voltage  

53 Four-Leg Synchrono

us 

Reference 

Frame 

(SRF) 

Predictive 

Digital 

Current 

Control 

Fuzzy 

Logic 

Controller  

  Sensing the load current is mandatory which 

increases system cost 

 Computational burden associated with the use of 

SRF (Park and Park inverse)  

 PLL is mandatory. 

 

 

54 Four-Leg

  

Synchrono

us 

Reference 

Frame 

(SRF) 

Modified 

Resonant 

PI 

Controller 

PI 

Controller 

  Sensing the load and filter currents are 

mandatory which increases the system cost. 

 Computational burden associated with the use of 

the SRF (Park and Park inverse). 

 PLL is mandatory. 

 Higher DC-link voltage. 

55 One 

capacitor 

three-phase 

three-wire 

only 

Does not 

need a 

harmonics 

extraction 

algorithm 

Vector 

Resonant 

Controller 

PI 

Controller 

 Does not need a 

harmonics 

extraction 

algorithm 

 This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 More sensors are required since it senses the 

filter current in addition to the supply current 

and voltage. 

 Only blocks selected harmonics components 

from the load side. 

 Requires a PLL. 

 Uses larger size capacitors 6.6 mF. 

56 One 

capacitor  

three-phase 

three-wire 

only 

LPF Source 

Current 

Detection 

PI 

Controller 

  This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 More sensors are required since it senses the 

filter current in addition to the supply current 

and voltage. 

 Requires a PLL. 

57 One 

capacitor  

three-phase 

three-wire 

only 

Stationary 

Reference 

Frame and 

Synchronous 

Reference 

Frame (SRF) 

SVM PI 

Controller 

  This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 More sensors are required since it senses the 

filter current in addition to the supply current 

and voltage. 
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Ref. 

No. 

Topology Harmonic 

current 

extraction 

method 

Current 

control 

DC-link 

voltage 

control 

Advantages shared 

with the proposed 

technique 

Disadvantages when compared to the proposed 

technique 

58 Two 

capacitors  

three-phase 

three-wire 

only 

FFT Predictive    PLL less 

 Sensing only the 

grid current or 

load current   

 This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 

59 3-leg and 

H-bridge 

three-phase 

three-wire 

only 

Fundament

al 

Extraction 

 PI 

Controller 

 PLL less 

 Sensing only the 

grid current or 

load current   

 This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 

60 One 

capacitor  

three-phase 

three-wire 

only 

Stationary 

Reference 

Frame and 

Synchronous 

Reference 

Frame (SRF) 

PI-VPI  

Controller   

PI 

Controller 

 Reduced number of 

sensors, only 

measurements of the 

supply voltage and 

supply current are 

required 

 This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 Requires a PLL. 

61 Split-Capac

itor 

Stationary 

Reference 

Frame 

 Nonstandard  

 SM − PI 

 Reduced number of 

sensors, only 

measurements of the 

supply voltage and 

supply current are 

required 

 Requires a PLL. 

62 Split- 

Capacitor 

Synchrono

us 

Reference 

Frame 

(SRF) 

Fuzzy-Lo

gic 

Current 

Controller  

PI 

Controller 

  More sensors are required since it senses the 

filter current in addition to the supply current 

and voltage. 

 Uses a linear fuzzy controller when dealing with 

non-liner conditions. 

 Requires a PLL. 

63 One 

capacitor  

three-phase 

three-wire 

only 

Synchronous 

Reference 

Frame (SRF) 

Hysteresis 

Band 

PI 

Controller 

and 

Fuzzy-logic 

  This technique does not deal with system 

unbalance since it is only concerned with 

three-phase three wire. 

 Neutral current mitigation is not considered. 

 Uses a linear fuzzy controller when dealing with 

non-liner conditions. 

 Requires a PLL. 

 

 

The fuzzy inference system implemented in this manuscript 

uses custom functions in the Fuzzy Logic Designer, available 

in the MATLAB Fuzzy Toolbox. 

1. Open the Fuzzy Logic Designer. At the MATLAB®  

command line, type: fuzzyLogicDesigner. 

2. Specify the number of inputs and outputs of the fuzzy 

system, as described in the Fuzzy Logic Designer. 

3. Create custom membership functions, and replace the 

built-in membership functions with them, as described  

in Specifying Custom Membership Functions. The 

membership functions define how each point in the input 

space is mapped to a membership value between 0 and 1. 

4. Create rules using the Rule Editor, as described in the 

Rule Editor. Define the logical relationship between the 

inputs and the outputs. 

5. Create custom inference functions, and replace the built-in 

inference functions with them, as described in Specifying 

Custom Inference Functions. Inference methods include 

the AND, OR, implication, aggregation, and defuzzification 

methods. This action generates output values for the fuzzy 

system. 

6. Select View > Surface to view the output of the fuzzy 

inference system in the Surface Viewer, as described in 

the Surface Viewer. 

B. Part Numbers and References of The Experimental 

Test Rig Elements: 

Part numbers and references of the experimental test rig 

elements are listed in Table III. 
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TABLE III 

PART NUMBERS AND REFERENCES OF THE EXPERIMENTAL  

TEST RIG ELEMENTS 

Hardwar used Part number Ref. 

32-bit, floating point, 

Digital Signal Processor 

(DSP) 

TMS320F28335 [64] 

VSI IGBTs inverter 

module 

FGH40T120SMD 

 
[65] 

Three-phase diode bridge SGBPC50005-SGBPC5016 [66] 

Voltage transducer LV-25P [67] 

Current transducer LA 100P [68] 
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